Detection in Networked Radar

نویسندگان

  • Kaitlyn Beaudet
  • Lauren Crider
  • Douglas Cochran
چکیده

The potential applicability of multiple-channel coherence estimation in situations where one channel contains a noise-free signal replica (as in active radar) or a high-SNR reference signal (as in passive coherent radar) has been proposed in recent work. Invariance of the distribution of M -channel coherence estimate statistics, including recently derived variants optimized for detection of signals having known rank, to the presence of a strong signal on one channel provided all channels are independent and the other M − 1 channels contain only noise enables the desired use of these statistics without altering detection thresholds designed to provide desired false-alarm probabilities. Traditionally, multiple-channel detection using coherence estimates has assumed that time series data from all channels are aggregated at a fusion center. Mitigation of this requirement to demand global aggregation of only scalar statistics that can be computed locally by sharing of data between pairs of nodes has been explored, and the use of maximum-entropy methods to provide surrogate statistics for pairs of nodes that are not in direct communication within a network has been proposed for traditional passive detection problems. This paper examines the applicability of this idea in the presence of a strong reference channel with particular attention to ascertaining relationships between network topology and detection performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation-Based Radar Detection Methods

In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like the GLRT method). In the sec...

متن کامل

The Object Detection Efficiency in Synthetic Aperture Radar Systems

The main purpose of this paper is to develop the method of characteristic functions for calculating the detection characteristics in the case of the object surrounded by rough surfaces. This method is to be implemented in synthetic aperture radar (SAR) systems using optimal resolution algorithms. By applying the specified technique, the expressions have been obtained for the false alarm and cor...

متن کامل

Radar Signal Detection in K-distributed Clutter by Pade Approximation

In this paper, two suboptimum detectors are proposed for coherent radar signal detection in K-distributed clutter. Assuming certain values for several initial moments of clutter amplitude, the characteristic function of the clutter amplitude is approximated by a limited series. Using the Pade approximation, it is then converted to a rational fraction. Thus, the pdf of the clutter amplitude is o...

متن کامل

Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods

With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...

متن کامل

Simulation-Based Radar Detection Methods

In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like &#10the GLRT method). In the s...

متن کامل

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013